A . M . Wille Minimal Varieties of Involutive Residuated Lattices
نویسندگان
چکیده
We establish the existence uncountably many atoms in the subvariety lattice of the variety of involutive residuated lattices. The proof utilizes a construction used in the proof of the corresponding result for residuated lattices and is based on the fact that every residuated lattice with greatest element can be associated in a canonical way with an involutive residuated lattice.
منابع مشابه
Minimal subvarieties of involutive residuated lattices
It is known that classical logic CL is the single maximal consistent logic over intuitionistic logic Int, which is moreover the single one even over the substructural logic FLew. On the other hand, if we consider maximal consistent logics over a weaker logic, there may be uncountablymany of them. Since the subvariety lattice of a given variety V of residuated lattices is dually isomorphic to th...
متن کاملRegularity in residuated lattices
In this paper, we study residuated lattices in order to give new characterizations for dense, regular and Boolean elements in residuated lattices and investigate special residuated lattices in order to obtain new characterizations for the directly indecomposable subvariety of Stonean residuated lattices. Free algebra in varieties of Stonean residuated lattices is constructed. We introduce in re...
متن کاملMinimal varieties of residuated lattices
In this paper we investigate the atomic level in the lattice of subvarieties of residuated lattices. In particular, we give infinitely many commutative atoms and construct continuum many non-commutative, representable atoms that satisfy the idempotent law; this answers Problem 8.6 of [12]. Moreover, we show that there are only two commutative idempotent atoms and only two cancellative atoms. Fi...
متن کاملMinimal subvarieties of involutive residuated lattices with mingle axiom
In this paper we study the number of minimal subvarieties of subvariety lattice. Since we can see that the subvariety lattice is dually isomorphic to the lattice of logics, the number of minimal subvarieties correspond to the number of maximal consistent logics. The maximal consistent logic over intuitionistic logic Int and FLew is only classical logic CL. For weaker logic number of minimal sub...
متن کاملRelation Algebras, Idempotent Semirings and Generalized Bunched Implication Algebras
This paper investigates connections between algebraic structures that are common in theoretical computer science and algebraic logic. Idempotent semirings are the basis of Kleene algebras, relation algebras, residuated lattices and bunched implication algebras. Extending a result of Chajda and Länger, we show that involutive residuated lattices are determined by a pair of dually isomorphic idem...
متن کامل